skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gregory, Margaret"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Output from a high-resolution numerical model is used to study near-surface transport in and around Cape Cod Bay using a Lagrangian approach. Key questions include the following: What are the dominant transport pathways? How do they vary in time on seasonal-to-interannual scales? What is the role of wind in driving this variability? Application to a possible release of wastewater into Cape Cod Bay from the recently closed Pilgrim Nuclear Power Station is discussed. Analysis reveals a seasonality in Cape Cod Bay transport patterns, with shorter residence times throughout the bay and an increased probability of outflow waters exiting the bay during spring and summer. Wind-induced Ekman currents are identified as a dominant driver of this variability. Significance StatementThis study is motivated by a possible release of radioisotope-contaminated wastewater into Cape Cod Bay, a region important to fishing, aquaculture, and tourist industries. The specific aim is to better understand near-surface transport patterns and mechanisms in Cape Cod Bay both in general and within the context of a wastewater release from Pilgrim Nuclear Power Station. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025